Skip to content

Notebooks

Data models - Jupyter Notebooks and components.

Cell (DatabooksBase) pydantic-model

Jupyter notebook cells.

Fields outputs and execution_count are not included since they should only be present in code cells - thus are treated as extra fields.

__hash__(self) special

Cells must be hashable for difflib.SequenceMatcher.

Source code in databooks/data_models/notebook.py
def __hash__(self) -> int:
    """Cells must be hashable for `difflib.SequenceMatcher`."""
    return hash(
        (type(self),) + tuple(v) if isinstance(v, list) else v
        for v in self.__dict__.values()
    )

cell_has_valid_type(v) classmethod

Check if cell has one of the three predefined types.

Source code in databooks/data_models/notebook.py
@validator("cell_type")
def cell_has_valid_type(cls, v: str) -> str:
    """Check if cell has one of the three predefined types."""
    valid_cell_types = ("raw", "markdown", "code")
    if v not in valid_cell_types:
        raise ValueError(f"Invalid cell type. Must be one of {valid_cell_types}")
    return v

clear_metadata(self, *, cell_metadata_keep=None, cell_metadata_remove=None, cell_execution_count=True, cell_outputs=False, remove_fields=['id'])

Clear cell metadata, execution count and outputs.

Parameters:

Name Type Description Default
cell_metadata_keep Sequence[str]

Metadata values to keep - simply pass an empty sequence (i.e.: ()) to remove all extra fields.

None
cell_metadata_remove Sequence[str]

Metadata values to remove

None
cell_execution_count bool

Whether or not to keep the execution count

True
cell_outputs bool

whether or not to keep the cell outputs

False

Returns:

Type Description
None
Source code in databooks/data_models/notebook.py
def clear_metadata(
    self,
    *,
    cell_metadata_keep: Sequence[str] = None,
    cell_metadata_remove: Sequence[str] = None,
    cell_execution_count: bool = True,
    cell_outputs: bool = False,
    remove_fields: List[str] = ["id"],
) -> None:
    """
    Clear cell metadata, execution count and outputs.

    :param cell_metadata_keep: Metadata values to keep - simply pass an empty
     sequence (i.e.: `()`) to remove all extra fields.
    :param cell_metadata_remove: Metadata values to remove
    :param cell_execution_count: Whether or not to keep the execution count
    :param cell_outputs: whether or not to keep the cell outputs
    :return:
    """
    nargs = sum((cell_metadata_keep is not None, cell_metadata_remove is not None))
    if nargs != 1:
        raise ValueError(
            "Exactly one of `cell_metadata_keep` or `cell_metadata_remove` must"
            f" be passed, got {nargs} arguments."
        )
    if cell_metadata_keep is not None:
        cell_metadata_remove = tuple(
            field for field, _ in self.metadata if field not in cell_metadata_keep
        )
    self.metadata.remove_fields(cell_metadata_remove)  # type: ignore

    self.remove_fields(remove_fields, missing_ok=True)
    if self.cell_type == "code":
        if cell_outputs:
            self.outputs: List[Dict[str, Any]] = []
        if cell_execution_count:
            self.execution_count = None

must_not_be_list_for_code_cells(values) classmethod

Check that code cells have list-type outputs.

Source code in databooks/data_models/notebook.py
@root_validator
def must_not_be_list_for_code_cells(cls, values: Dict[str, Any]) -> Dict[str, Any]:
    """Check that code cells have list-type outputs."""
    if values["cell_type"] == "code" and not isinstance(values["outputs"], list):
        raise ValueError(
            "All code cells must have a list output property, got"
            f" {type(values.get('outputs'))}"
        )
    return values

only_code_cells_have_outputs_and_execution_count(values) classmethod

Check that only code cells have outputs and execution count.

Source code in databooks/data_models/notebook.py
@root_validator
def only_code_cells_have_outputs_and_execution_count(
    cls, values: Dict[str, Any]
) -> Dict[str, Any]:
    """Check that only code cells have outputs and execution count."""
    if values["cell_type"] != "code" and (
        ("outputs" in values) or ("execution_count" in values)
    ):
        raise ValueError(
            "Found `outputs` or `execution_count` for cell of type"
            f" `{values['cell_type']}`"
        )
    return values

CellMetadata (DatabooksBase) pydantic-model

Cell metadata. Empty by default but can accept extra fields.

Cells (GenericModel, BaseCells) pydantic-model

Similar to list, with - operator using difflib.SequenceMatcher.

data: List[T] property readonly

Define property data required for collections.UserList class.

__get_validators__() classmethod special

Get validators for custom class.

Source code in databooks/data_models/notebook.py
@classmethod
def __get_validators__(cls) -> Generator[Callable[..., Any], None, None]:
    """Get validators for custom class."""
    yield cls.validate

__init__(self, elements=()) special

Allow passing data as a positional argument when instantiating class.

Source code in databooks/data_models/notebook.py
def __init__(self, elements: Sequence[T] = ()) -> None:
    """Allow passing data as a positional argument when instantiating class."""
    super(Cells, self).__init__(__root__=elements)

__iter__(self) special

Use list property as iterable.

Source code in databooks/data_models/notebook.py
def __iter__(self) -> Generator[Any, None, None]:
    """Use list property as iterable."""
    return (el for el in self.data)

__sub__(self, other) special

Return the difference using difflib.SequenceMatcher.

Source code in databooks/data_models/notebook.py
def __sub__(
    self: Cells[Cell], other: Cells[Cell]
) -> Cells[Tuple[List[Cell], List[Cell]]]:
    """Return the difference using `difflib.SequenceMatcher`."""
    if type(self) != type(other):
        raise TypeError(
            f"Unsupported operand types for `-`: `{type(self).__name__}` and"
            f" `{type(other).__name__}`"
        )

    _self = deepcopy(self)
    _other = deepcopy(other)
    for cells in (_self, _other):
        for cell in cells:
            cell.remove_fields(["id"], missing_ok=True)

    # By setting the context to the max number of cells and using
    #  `pathlib.SequenceMatcher.get_grouped_opcodes` we essentially get the same
    #  result as `pathlib.SequenceMatcher.get_opcodes` but in smaller chunks
    n_context = max(len(_self), len(_other))
    diff_opcodes = list(
        SequenceMatcher(
            isjunk=None, a=_self, b=_other, autojunk=False
        ).get_grouped_opcodes(n_context)
    )

    if len(diff_opcodes) > 1:
        raise RuntimeError(
            "Expected one group for opcodes when context size is "
            f" {n_context} for {len(_self)} and {len(_other)} cells in"
            " notebooks."
        )
    return Cells[Tuple[List[Cell], List[Cell]]](
        [
            # https://github.com/python/mypy/issues/9459
            tuple((_self.data[i1:j1], _other.data[i2:j2]))  # type: ignore
            for _, i1, j1, i2, j2 in chain.from_iterable(diff_opcodes)
        ]
    )

resolve(self, *, keep_first_cells=None, first_id=None, last_id=None, **kwargs)

Resolve differences between databooks.data_models.notebook.Cells.

Parameters:

Name Type Description Default
keep_first_cells Optional[bool]

Whether to keep the cells of the first notebook or not. If None, then keep both wrapping the git-diff tags

None
first_id Optional[str]

Git hash of first file in conflict

None
last_id Optional[str]

Git hash of last file in conflict

None
kwargs Any

(Unused) keyword arguments to keep compatibility with databooks.data_models.base.resolve

{}

Returns:

Type Description
List[Cell]

List of cells

Source code in databooks/data_models/notebook.py
def resolve(
    self: Cells[Tuple[List[Cell], List[Cell]]],
    *,
    keep_first_cells: Optional[bool] = None,
    first_id: Optional[str] = None,
    last_id: Optional[str] = None,
    **kwargs: Any,
) -> List[Cell]:
    """
    Resolve differences between `databooks.data_models.notebook.Cells`.

    :param keep_first_cells: Whether to keep the cells of the first notebook or not.
     If `None`, then keep both wrapping the git-diff tags
    :param first_id: Git hash of first file in conflict
    :param last_id: Git hash of last file in conflict
    :param kwargs: (Unused) keyword arguments to keep compatibility with
     `databooks.data_models.base.resolve`
    :return: List of cells
    """
    if keep_first_cells is not None:
        return list(
            chain.from_iterable(pairs[not keep_first_cells] for pairs in self.data)
        )
    return list(
        chain.from_iterable(
            Cells.wrap_git(
                first_cells=val[0],
                last_cells=val[1],
                hash_first=first_id,
                hash_last=last_id,
            )
            if val[0] != val[1]
            else val[0]
            for val in self.data
        )
    )

validate(v) classmethod

Ensure object is custom defined container.

Source code in databooks/data_models/notebook.py
@classmethod
def validate(cls, v: List[T]) -> Cells[T]:
    """Ensure object is custom defined container."""
    if not isinstance(v, cls):
        return cls(v)
    else:
        return v

wrap_git(first_cells, last_cells, hash_first=None, hash_last=None) classmethod

Wrap git-diff cells in existing notebook.

Source code in databooks/data_models/notebook.py
@classmethod
def wrap_git(
    cls,
    first_cells: List[Cell],
    last_cells: List[Cell],
    hash_first: Optional[str] = None,
    hash_last: Optional[str] = None,
) -> List[Cell]:
    """Wrap git-diff cells in existing notebook."""
    return (
        [
            Cell(
                metadata=CellMetadata(git_hash=hash_first),
                source=[f"`<<<<<<< {hash_first}`"],
                cell_type="markdown",
            )
        ]
        + first_cells
        + [
            Cell(
                source=["`=======`"],
                cell_type="markdown",
                metadata=CellMetadata(),
            )
        ]
        + last_cells
        + [
            Cell(
                metadata=CellMetadata(git_hash=hash_last),
                source=[f"`>>>>>>> {hash_last}`"],
                cell_type="markdown",
            )
        ]
    )

Cells[Cell] (Cells) pydantic-model

Config

getter_dict (Representation)

Hack to make object's smell just enough like dicts for validate_model.

We can't inherit from Mapping[str, Any] because it upsets cython so we have to implement all methods ourselves.

get_field_info(name) classmethod

Get properties of FieldInfo from the fields property of the config class.

json_dumps(obj, *, skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True, cls=None, indent=None, separators=None, default=None, sort_keys=False, **kw)

Serialize obj to a JSON formatted str.

If skipkeys is true then dict keys that are not basic types (str, int, float, bool, None) will be skipped instead of raising a TypeError.

If ensure_ascii is false, then the return value can contain non-ASCII characters if they appear in strings contained in obj. Otherwise, all such characters are escaped in JSON strings.

If check_circular is false, then the circular reference check for container types will be skipped and a circular reference will result in an OverflowError (or worse).

If allow_nan is false, then it will be a ValueError to serialize out of range float values (nan, inf, -inf) in strict compliance of the JSON specification, instead of using the JavaScript equivalents (NaN, Infinity, -Infinity).

If indent is a non-negative integer, then JSON array elements and object members will be pretty-printed with that indent level. An indent level of 0 will only insert newlines. None is the most compact representation.

If specified, separators should be an (item_separator, key_separator) tuple. The default is (', ', ': ') if indent is None and (',', ': ') otherwise. To get the most compact JSON representation, you should specify (',', ':') to eliminate whitespace.

default(obj) is a function that should return a serializable version of obj or raise TypeError. The default simply raises TypeError.

If sort_keys is true (default: False), then the output of dictionaries will be sorted by key.

To use a custom JSONEncoder subclass (e.g. one that overrides the .default() method to serialize additional types), specify it with the cls kwarg; otherwise JSONEncoder is used.

Source code in databooks/data_models/notebook.py
def dumps(obj, *, skipkeys=False, ensure_ascii=True, check_circular=True,
        allow_nan=True, cls=None, indent=None, separators=None,
        default=None, sort_keys=False, **kw):
    """Serialize ``obj`` to a JSON formatted ``str``.

    If ``skipkeys`` is true then ``dict`` keys that are not basic types
    (``str``, ``int``, ``float``, ``bool``, ``None``) will be skipped
    instead of raising a ``TypeError``.

    If ``ensure_ascii`` is false, then the return value can contain non-ASCII
    characters if they appear in strings contained in ``obj``. Otherwise, all
    such characters are escaped in JSON strings.

    If ``check_circular`` is false, then the circular reference check
    for container types will be skipped and a circular reference will
    result in an ``OverflowError`` (or worse).

    If ``allow_nan`` is false, then it will be a ``ValueError`` to
    serialize out of range ``float`` values (``nan``, ``inf``, ``-inf``) in
    strict compliance of the JSON specification, instead of using the
    JavaScript equivalents (``NaN``, ``Infinity``, ``-Infinity``).

    If ``indent`` is a non-negative integer, then JSON array elements and
    object members will be pretty-printed with that indent level. An indent
    level of 0 will only insert newlines. ``None`` is the most compact
    representation.

    If specified, ``separators`` should be an ``(item_separator, key_separator)``
    tuple.  The default is ``(', ', ': ')`` if *indent* is ``None`` and
    ``(',', ': ')`` otherwise.  To get the most compact JSON representation,
    you should specify ``(',', ':')`` to eliminate whitespace.

    ``default(obj)`` is a function that should return a serializable version
    of obj or raise TypeError. The default simply raises TypeError.

    If *sort_keys* is true (default: ``False``), then the output of
    dictionaries will be sorted by key.

    To use a custom ``JSONEncoder`` subclass (e.g. one that overrides the
    ``.default()`` method to serialize additional types), specify it with
    the ``cls`` kwarg; otherwise ``JSONEncoder`` is used.

    """
    # cached encoder
    if (not skipkeys and ensure_ascii and
        check_circular and allow_nan and
        cls is None and indent is None and separators is None and
        default is None and not sort_keys and not kw):
        return _default_encoder.encode(obj)
    if cls is None:
        cls = JSONEncoder
    return cls(
        skipkeys=skipkeys, ensure_ascii=ensure_ascii,
        check_circular=check_circular, allow_nan=allow_nan, indent=indent,
        separators=separators, default=default, sort_keys=sort_keys,
        **kw).encode(obj)

json_loads(s, *, cls=None, object_hook=None, parse_float=None, parse_int=None, parse_constant=None, object_pairs_hook=None, **kw)

Deserialize s (a str, bytes or bytearray instance containing a JSON document) to a Python object.

object_hook is an optional function that will be called with the result of any object literal decode (a dict). The return value of object_hook will be used instead of the dict. This feature can be used to implement custom decoders (e.g. JSON-RPC class hinting).

object_pairs_hook is an optional function that will be called with the result of any object literal decoded with an ordered list of pairs. The return value of object_pairs_hook will be used instead of the dict. This feature can be used to implement custom decoders. If object_hook is also defined, the object_pairs_hook takes priority.

parse_float, if specified, will be called with the string of every JSON float to be decoded. By default this is equivalent to float(num_str). This can be used to use another datatype or parser for JSON floats (e.g. decimal.Decimal).

parse_int, if specified, will be called with the string of every JSON int to be decoded. By default this is equivalent to int(num_str). This can be used to use another datatype or parser for JSON integers (e.g. float).

parse_constant, if specified, will be called with one of the following strings: -Infinity, Infinity, NaN. This can be used to raise an exception if invalid JSON numbers are encountered.

To use a custom JSONDecoder subclass, specify it with the cls kwarg; otherwise JSONDecoder is used.

The encoding argument is ignored and deprecated since Python 3.1.

Source code in databooks/data_models/notebook.py
def loads(s, *, cls=None, object_hook=None, parse_float=None,
        parse_int=None, parse_constant=None, object_pairs_hook=None, **kw):
    """Deserialize ``s`` (a ``str``, ``bytes`` or ``bytearray`` instance
    containing a JSON document) to a Python object.

    ``object_hook`` is an optional function that will be called with the
    result of any object literal decode (a ``dict``). The return value of
    ``object_hook`` will be used instead of the ``dict``. This feature
    can be used to implement custom decoders (e.g. JSON-RPC class hinting).

    ``object_pairs_hook`` is an optional function that will be called with the
    result of any object literal decoded with an ordered list of pairs.  The
    return value of ``object_pairs_hook`` will be used instead of the ``dict``.
    This feature can be used to implement custom decoders.  If ``object_hook``
    is also defined, the ``object_pairs_hook`` takes priority.

    ``parse_float``, if specified, will be called with the string
    of every JSON float to be decoded. By default this is equivalent to
    float(num_str). This can be used to use another datatype or parser
    for JSON floats (e.g. decimal.Decimal).

    ``parse_int``, if specified, will be called with the string
    of every JSON int to be decoded. By default this is equivalent to
    int(num_str). This can be used to use another datatype or parser
    for JSON integers (e.g. float).

    ``parse_constant``, if specified, will be called with one of the
    following strings: -Infinity, Infinity, NaN.
    This can be used to raise an exception if invalid JSON numbers
    are encountered.

    To use a custom ``JSONDecoder`` subclass, specify it with the ``cls``
    kwarg; otherwise ``JSONDecoder`` is used.

    The ``encoding`` argument is ignored and deprecated since Python 3.1.
    """
    if isinstance(s, str):
        if s.startswith('\ufeff'):
            raise JSONDecodeError("Unexpected UTF-8 BOM (decode using utf-8-sig)",
                                  s, 0)
    else:
        if not isinstance(s, (bytes, bytearray)):
            raise TypeError(f'the JSON object must be str, bytes or bytearray, '
                            f'not {s.__class__.__name__}')
        s = s.decode(detect_encoding(s), 'surrogatepass')

    if "encoding" in kw:
        import warnings
        warnings.warn(
            "'encoding' is ignored and deprecated. It will be removed in Python 3.9",
            DeprecationWarning,
            stacklevel=2
        )
        del kw['encoding']

    if (cls is None and object_hook is None and
            parse_int is None and parse_float is None and
            parse_constant is None and object_pairs_hook is None and not kw):
        return _default_decoder.decode(s)
    if cls is None:
        cls = JSONDecoder
    if object_hook is not None:
        kw['object_hook'] = object_hook
    if object_pairs_hook is not None:
        kw['object_pairs_hook'] = object_pairs_hook
    if parse_float is not None:
        kw['parse_float'] = parse_float
    if parse_int is not None:
        kw['parse_int'] = parse_int
    if parse_constant is not None:
        kw['parse_constant'] = parse_constant
    return cls(**kw).decode(s)

prepare_field(field) classmethod

Optional hook to check or modify fields during model creation.

JupyterNotebook (DatabooksBase) pydantic-model

Jupyter notebook. Extra fields yield invalid notebook.

clear_metadata(self, *, notebook_metadata_keep=None, notebook_metadata_remove=None, **cell_kwargs)

Clear notebook and cell metadata.

Parameters:

Name Type Description Default
notebook_metadata_keep Sequence[str]

Metadata values to keep - simply pass an empty sequence (i.e.: ()) to remove all extra fields.

None
notebook_metadata_remove Sequence[str]

Metadata values to remove

None
cell_kwargs Any

keyword arguments to be passed to each cell's databooks.data_models.Cell.clear_metadata

{}

Returns:

Type Description
None
Source code in databooks/data_models/notebook.py
def clear_metadata(
    self,
    *,
    notebook_metadata_keep: Sequence[str] = None,
    notebook_metadata_remove: Sequence[str] = None,
    **cell_kwargs: Any,
) -> None:
    """
    Clear notebook and cell metadata.

    :param notebook_metadata_keep: Metadata values to keep - simply pass an empty
     sequence (i.e.: `()`) to remove all extra fields.
    :param notebook_metadata_remove: Metadata values to remove
    :param cell_kwargs: keyword arguments to be passed to each cell's
     `databooks.data_models.Cell.clear_metadata`
    :return:
    """
    nargs = sum(
        (notebook_metadata_keep is not None, notebook_metadata_remove is not None)
    )
    if nargs != 1:
        raise ValueError(
            "Exactly one of `notebook_metadata_keep` or `notebook_metadata_remove`"
            f" must be passed, got {nargs} arguments."
        )
    if notebook_metadata_keep is not None:
        notebook_metadata_remove = tuple(
            field
            for field, _ in self.metadata
            if field not in notebook_metadata_keep
        )
    self.metadata.remove_fields(notebook_metadata_remove)  # type: ignore

    if len(cell_kwargs) > 0:
        _clean_cells = deepcopy(self.cells)
        for cell in _clean_cells:
            cell.clear_metadata(**cell_kwargs)
        self.cells = _clean_cells

parse_file(path, **parse_kwargs) classmethod

Parse notebook from a path.

Source code in databooks/data_models/notebook.py
@classmethod
def parse_file(cls, path: Path | str, **parse_kwargs: Any) -> JupyterNotebook:
    """Parse notebook from a path."""
    content_arg = parse_kwargs.pop("content_type", None)
    if content_arg is not None:
        raise ValueError(
            f"Value of `content_type` must be `json` (default), got `{content_arg}`"
        )
    return super(JupyterNotebook, cls).parse_file(
        path=path, content_type="json", **parse_kwargs
    )

NotebookMetadata (DatabooksBase) pydantic-model

Notebook metadata. Empty by default but can accept extra fields.

Back to top